Cientista de Dados e Analista de Dados – Diferenças e Semelhanças
Pode não ser tão simples comparar Cientista de Dados e Analista de Dados. Mas vamos ajudar você a compreender as diferenças e semelhanças entre essas funções, agora neste artigo.
Pode não ser tão simples comparar Cientista de Dados e Analista de Dados. Mas vamos ajudar você a compreender as diferenças e semelhanças entre essas funções, agora neste artigo.
Organizações de diversos setores buscam aplicar essas tecnologias para aumentar eficiência, entender melhor seus clientes, gerar insights estratégicos e obter vantagem competitiva. No entanto, muitas ainda tropeçam ao tentar adotar IA ou projetos de Data Science sem preparar o terreno: sem dados organizados e confiáveis, qualquer esforço tecnológico tende a virar apenas teoria, sem impacto prático.
Neste artigo, vamos explorar as principais características de um Cientista de Dados e as 7 Maneiras que os Cientistas de Dados usam Estatística. Vamos começar?
A combinação de conhecimentos teóricos sólidos, habilidades práticas e uma certificação reconhecida pelo MEC é a chave para se destacar e prosperar na era dos dados e da IA.
Um portfólio sólido pode ser o divisor de águas entre conquistar ou não uma vaga na área de dados. Mas o que realmente torna um portfólio atraente para recrutadores e gestores? Não basta encher a página com gráficos sofisticados, modelos avançados e dashboards impressionantes. Esses elementos são o mínimo esperado e todos já sabem que precisam estar lá. O diferencial está em como você constrói e apresenta seus projetos, evitando armadilhas comuns e demonstrando maturidade profissional.
Na quinta e última parte do Guia Definitivo Sobre Data Drift vamos compreender como identificar o drift com Testes Estatísticos e estratégias para combater o drift uma vez identificado.
Ignorar o Data Drift não é uma opção viável para qualquer organização que dependa de Machine Learning para tomar decisões críticas. As consequências vão muito além de uma simples queda em um gráfico de precisão; elas têm ramificações tangíveis e muitas vezes dispendiosas para o negócio, a reputação e a conformidade regulamentar. Agora na Parte 3 vejamos os perigos do data drift.
Com um arsenal de técnicas de tratamento de valores ausentes à disposição, a questão final é: como escolher a abordagem adequada para um determinado problema? A resposta não está em uma única “melhor” técnica, mas em um processo de tomada de decisão estruturado que equilibra a teoria estatística, os objetivos do projeto e as restrições práticas. Confira a sexta e última parte deste guia.
Nem todos os dados são tabulares e independentes. Estruturas de dados específicas, como séries temporais e variáveis categóricas, exigem abordagens de imputação para os valores ausentes que respeitem sua natureza intrínseca. Isso é o que veremos agora na quinta e penúltima parte do Guia Definitivo Para o Tratamento de Valores Ausentes em Data Science.
Enquanto a imputação univariada (que vimos na Parte 3 deste guia) “preenche” os dados, a imputação multivariada tenta “prever” os valores ausentes de forma mais inteligente, utilizando as relações entre as variáveis. Esta abordagem é fundamentalmente mais robusta, especialmente em cenários MAR. Mas, como a imputação multivariada é mais avançada, ela também pode trazer um pouco mais de complexidade em muitos casos. Vejamos as principais técnicas nessa categoria.
As Estratégias Fundamentais são as abordagens mais diretas e comuns para lidar com valores ausentes. Embora sua simplicidade seja atraente, elas vêm com suposições fortes e desvantagens significativas que devem ser cuidadosamente consideradas. Aproveite este incrível guia agora com a Parte 3.
A decisão mais importante no tratamento de dados ausentes não é qual algoritmo ou técnica usar, mas sim qual suposição fazer sobre por que os dados estão faltando. A teoria estatística classifica a ausência de dados em três mecanismos. Entender essa taxonomia é a base para qualquer abordagem metodologicamente sólida.
Este guia definitivo foi elaborado para ser seu recurso completo sobre o o tratamento de valores ausentes. Iremos além das soluções rápidas e mergulharemos fundo na teoria estatística que governa a ausência de dados. Em seguida, traduziremos essa teoria em estratégias práticas. Ao final deste guia, você estará equipado não apenas para aplicar técnicas de tratamento, mas para justificar suas escolhas, compreendendo os trade-offs e tomando decisões informadas que fortalecem a robustez e a confiabilidade de seus projetos.
Dominar a otimização de hiperparâmetros é o que eleva um profissional de “alguém que executa modelos” para “alguém que constrói soluções de Machine Learning”. É uma competência que combina compreensão teórica profunda, intuição prática e rigor de engenharia. Este guia traz o que você precisa saber sobre o tema.
Que Machine Learning está revolucionando o mundo como conhecemos e automatizando as mais variadas tarefas nos mais variados setores, já não é novidade para ninguém. Mas uma área vem colhendo cada vez mais benefícios de aplicações baseadas em Machine Learning: Supply Chain (ou Cadeia de Suprimentos). Neste artigo, vamos listar 10 Aplicações de Machine Learning em Supply Chain.