IA x Machine Learning x Deep Learning x LLM
Preparamos uma tabela para ajudar a compreender as diferenças entre IA, Machine Learning, Deep Learning e LLM. Confira!
Preparamos uma tabela para ajudar a compreender as diferenças entre IA, Machine Learning, Deep Learning e LLM. Confira!
Neste artigo discutiremos o conceito de interpretabilidade e sua importância, as técnicas populares para explicar modelos (como SHAP, LIME e métodos baseados em regras), exemplos práticos em negócios e, por fim, as limitações e desafios envolvidos.
Para ajudar aqueles que desejam estar preparados para a expansão do mercado de consultoria na área de dados em 2025, criamos um módulo gratuito completo, que vai cobrir os passos necessários (técnicos e administrativos) para prestar consultoria. E nesse módulo vamos incluir um projeto completo de automação com Agentes de IA.
Preparamos este guia para ajuda você a compreender o que é destilação de LLMs (LLM Distillation), como a destilação funciona, seus princípios técnicos, aplicações práticas e as vantagens e desafios envolvidos nessa abordagem. Boa leitura e bons estudos.
Aqui estão as sete principais bibliotecas Python que se destacam no desenvolvimento de Inteligência Artificial.
Fine-Tuning do Modelo, RAG (Retrieval-Augmented Generation) e Engenharia de Prompt. Este artigo é um guia completo que explora, de forma detalhada e bem didática, o que é cada estratégia, suas diferenças técnicas, casos de uso em negócios, vantagens, desvantagens, limitações e orientações sobre quando cada abordagem é mais adequada.
Neste artigo vamos listar para você algumas das melhores práticas ao implementar RAG, bem como alguns casos de uso.
RAG aproveita dados externos para enriquecer o contexto dos LLMs, aumentando assim a sua capacidade de gerar respostas mais precisas e relevantes. À medida que cresce a adoção de RAG, aumenta também a complexidade de avaliar eficazmente o seu desempenho.
Com o uso de RAG, é introduzido um componente de recuperação de informações que utiliza a entrada do usuário para extrair informações de uma nova fonte de dados primeiro. A consulta do usuário e as informações relevantes são fornecidas ao LLM. O LLM usa esse novo conhecimento e seus dados de treinamento para criar respostas mais adaptadas.
O uso da tecnologia RAG traz diversas vantagens para as iniciativas de IA Generativa de uma empresa. Confira alguns dos benefícios!
Os LLMs (Large Language Models) varreram o universo da Inteligência Artificial, em especial nas tarefas de Processamento de Linguagem Natural (PLN). Mas, como qualquer tecnologia, os LLMs têm limitações. E algumas dessas limitações estão sendo superadas com um processo de RAG (Retrieval-Augmented Generation), personalizando o uso de LLMs para necessidades específicas das empresas.
Descrevemos aqui para você a trilha de aprendizagem da Formação Engenheiro de IA, incluindo os cursos de bônus.
Descrevemos aqui para você a trilha de aprendizagem da Formação Visão Computacional 4.0, incluindo os cursos de bônus.
Descrevemos aqui para você a trilha de aprendizagem da Formação Inteligência Artificial Para Medicina 4.0, incluindo os cursos de bônus.
Um guia completo com tudo que você precisa saber sobre IA Generativa, a tecnologia por trás do ChatGPT e do Deepseek.