RAG Attack – Como a Maior Força da IA Se Tornou Uma Vulnerabilidade de Segurança
As organizações devem parar de tratar o RAG como um experimento de IA “plug-and-play” e começar a tratá-lo como o que ele é: Infraestrutura de dados de missão crítica.
As organizações devem parar de tratar o RAG como um experimento de IA “plug-and-play” e começar a tratá-lo como o que ele é: Infraestrutura de dados de missão crítica.
Este é um curso para profissionais que desejam dominar as tecnologias que estão por trás dos sistemas de busca inteligentes, chatbots corporativos e Agentes de IA com memória. É um curso que alia teoria e prática na medida certa e que ensina passo a passo como transformar dados de texto e imagem em vetores numéricos, armazená-los em bancos vetoriais e utilizá-los para construir aplicações reais de IA Generativa com Recuperação Aumentada por Geração (RAG).
Fine-Tuning do Modelo, RAG (Retrieval-Augmented Generation) e Engenharia de Prompt. Este artigo é um guia completo que explora, de forma detalhada e bem didática, o que é cada estratégia, suas diferenças técnicas, casos de uso em negócios, vantagens, desvantagens, limitações e orientações sobre quando cada abordagem é mais adequada.
Neste artigo, vamos explorar o que é re-ranking no contexto de RAG (Retrieval-Augmented Generation), como funciona essa técnica e por que ela é necessária. Também veremos aplicações práticas, seus benefícios e os desafios envolvidos nessa etapa fundamental dos sistemas de busca e geração de respostas.
Neste artigo vamos listar para você algumas das melhores práticas ao implementar RAG, bem como alguns casos de uso.
RAG aproveita dados externos para enriquecer o contexto dos LLMs, aumentando assim a sua capacidade de gerar respostas mais precisas e relevantes. À medida que cresce a adoção de RAG, aumenta também a complexidade de avaliar eficazmente o seu desempenho.
Com o uso de RAG, é introduzido um componente de recuperação de informações que utiliza a entrada do usuário para extrair informações de uma nova fonte de dados primeiro. A consulta do usuário e as informações relevantes são fornecidas ao LLM. O LLM usa esse novo conhecimento e seus dados de treinamento para criar respostas mais adaptadas.
O uso da tecnologia RAG traz diversas vantagens para as iniciativas de IA Generativa de uma empresa. Confira alguns dos benefícios!
Os LLMs (Large Language Models) varreram o universo da Inteligência Artificial, em especial nas tarefas de Processamento de Linguagem Natural (PLN). Mas, como qualquer tecnologia, os LLMs têm limitações. E algumas dessas limitações estão sendo superadas com um processo de RAG (Retrieval-Augmented Generation), personalizando o uso de LLMs para necessidades específicas das empresas.